Local Lagrange Interpolation With Cubic C Splines on Tetrahedral Partitions

نویسندگان

  • Gero Hecklin
  • Günther Nürnberger
  • Larry L. Schumaker
  • Frank Zeilfelder
چکیده

We describe an algorithm for constructing a Lagrange interpolation pair based on C cubic splines defined on tetrahedral partitions. In particular, given a set of points V ∈ IR, we construct a set P containing V and a spline space S 3 (△) based on a tetrahedral partition △ whose set of vertices include V such that interpolation at the points of P is well-defined and unique. Earlier results are extended in two ways: 1) here we allow arbitrary sets V, and 2) the method provides optimal approximation order of smooth functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local lagrange interpolation with cubic C1 splines on tetrahedral partitions

We describe an algorithm for constructing a Lagrange interpolation pair based onC1 cubic splines defined on tetrahedral partitions. In particular, given a set of points V ∈ R3, we construct a set P containing V and a spline space S3( ) based on a tetrahedral partition whose set of vertices include V such that interpolation at the points of P is well-defined and unique. Earlier results are exten...

متن کامل

A Local Lagrange Interpolation Method Based on C Cubic Splines on Freudenthal Partitions

A trivariate Lagrange interpolation method based on C1 cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.

متن کامل

A local Lagrange interpolation method based on C1 cubic splines on Freudenthal partitions

A trivariate Lagrange interpolation method based on C cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.

متن کامل

Local quasi-interpolation by cubic C1 splines on type-6 tetrahedral partitions

We describe an approximating scheme based on cubic C1 splines on type-6 tetrahedral partitions using data on volumetric grids. The quasi-interpolating piecewise polynomials are directly determined by setting their Bernstein–Bézier coefficients to appropriate combinations of the data values. Hence, each polynomial piece of the approximating spline is immediately available from local portions of ...

متن کامل

Local Lagrange Interpolation by Bivariate C 1 Cubic Splines

Lagrange interpolation schemes are constructed based on C 1 cubic splines on certain triangulations obtained from checkerboard quad-rangulations. x1. Introduction Given a triangulation 4 of a simply connected polygonal domain , the space of C 1 cubic splines is deened by S 1 3 (4) := fs 2 C 1 (() : sj T 2 P 3 , all T 2 4g; where P 3 is the space of cubic bivariate polynomials. In this paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008